Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский ядерный университет «МИФИ» ИАТЭ НИЯУ МИФИ ТЕХНИКУМ

		УТВЕРЖДАЮ:
		И.о. зам.директора
		ИФИМ ЧКИН ЄТАИ
		М.Г.Ткаченко
«	>>> _	2020 г.

КОМПЛЕКТ КОНТРОЛЬНО – ИЗМЕРИТЕЛЬНЫХ МАТЕРИАЛОВ

текущего и промежуточного контроля успеваемости

ПО УЧЕБНОЙ ДИСЦИПЛИНЕ МДК 01.03 Ядерные реакторы

Направление подготовки (специальность)	14.02.02. «Радиационная Безопасность (по отраслям)»
Квалификация (степень) выпускника	техник
Форма обучения	очная

Комплект контрольно-измерительных материалов по учебной дисциплине «МДК 01.03 Ядерные реакторы» разработан на основе Федерального государственного образовательного стандарта (далее ФГОС СПО) по специальности среднего профессионального образования 14.02.02 «Радиационная Безопасность» (по отраслям)

Разработчик:	
Преподаватель Техникума ИАТЭ НИ	ЯУ МИФИ
Якушева А.В	
JIKJ III OSU 11.15.1	
Программа рассмотрена на заседании	предметной цикловой комиссии
общепрофессиональных дисциплин с	пециальностей: ТОЭ и РБ
Протокол №1 от «28» августа 2020 г.	
Программа рассмотрена на заседании	Методического Совета Техникума
Протокол №1 от «31» августа 2020 г.	•
Председатель ПЦК	Председатель Методического Совета
Г.И. Козленко	Техникума
«28» августа 2020 г.	В.А. Хайрова
	«31» августа 2020 г.
Составитель программы	
(А.В. Якушева)	
«28» августа 2020 г.	

СОДЕРЖАНИЕ

- I Паспорт комплекта контрольно-измерительных материалов
- 1 Область применения
- 2Объекты оценивания результаты освоения УД
- 3 Формы контроля и оценки результатов освоения УД
- 4 Система оценивания комплекта КИМ текущего контроля и промежуточной аттестации

II Текущий контроль и оценка результатов обучения УД

Контрольная работа 1

Контрольная работа 2

Контрольная работа 3

Контрольная работа 4

III Промежуточная аттестация по УД

Спецификация зачёта

Вопросы

І ПАСПОРТ КОМПЛЕКТА КОНТРОЛЬНО-ИЗМЕРИТЕЛЬНЫХ МАТЕРИАЛОВ

1 Область применения

Комплект контрольно - измерительных материалов (КИМ) предназначен для проверки результатов освоения учебной дисциплины «МДК 01.03 Ядерные реакторы» основной профессиональной образовательной программы (далее ОПОП) по специальности СПО 14.02.02 «Радиационная Безопасность» (по отраслям)

2 Объекты оценивания – результаты освоения УД

КИМ позволяет оценить следующие результаты освоения учебной дисциплины «МДК 01.03 Ядерные реакторы» в соответствии с ФГОС 14.02.02 «Радиационная Безопасность» (по отраслям) и рабочей программой дисциплины умения:

- делать простые и качественные оценки процессов, происходящих в ядерной энергетической установке;
- по приборам контроля и работе радиационных систем определять нормальный и аварийный режимы ЯЭУ;
- осуществлять дозиметрический контроль за работой персонала АЭС, при работе энергетической установки, при перегрузке топлива ЯЭУ и других мероприятий с топливом;

знания:

- основы ядерной энергетики;
- существующие типы ядерных реакторов и их особенности;
- методы и средства защиты от мощного потока нейтронного и гамма-излучения;
- типы ядерного топлива и основные характеристики активных зон;
- нормальные и аварийные режимы работы ЯЭУ;
- средства и методы дезактивации, правила и образования, и хранения радиоактивных отходов и оборудования.

Вышеперечисленные умения и знания направлены на формирование у студентов следующих профессиональных и общих компетенций

Код	Компетенция
компетенций	
OK 1	Понимать сущность и социальную значимость своей будущей профессии, проявлять к ней устойчивый интерес.
OK 2	Организовывать собственную деятельность, выбирать типовые методы и способы выполнения профессиональных задач, оценивать их эффективность и качество.
OK-3	Принимать решения в стандартных и нестандартных ситуациях и нести за них ответственность.
OK 4	Осуществлять поиск и использование информации, необходимой для эффективного выполнения профессиональных задач, профессионального и личностного развития.
OK-5	Использовать информационно-коммуникационные технологии в профессиональной деятельности.
ОК 6	Работать в коллективе и команде, эффективно общаться с коллегами, руководством, потребителями.
ОК 7	Брать на себя ответственность за работу членов команды (подчиненных),

	результат выполнения заданий.
OK 8	Самостоятельно определять задачи профессионального и личностного
	развития, заниматься самообразованием, осознанно планировать
	повышение квалификации.
ОК 9	Ориентироваться в условиях частой смены технологий в профессиональной
	деятельности.

3. Формы контроля и оценки результатов освоения УД

Контроль и оценка результатов освоения — это выявление, измерение и оценивание знаний, умений и формирующихся общих и профессиональных компетенций в рамках освоения УД. В соответствии с учебным планом специальности, 14.02.02 «Радиационная Безопасность» (по отраслям) рабочей программой дисциплины «МДК 01.03 Ядерные реакторы» предусматривается текущий и промежуточный контроль результатов освоения.

3.1 Формы текущего контроля

Текущий контроль успеваемости представляет собой проверку усвоения учебного материала, регулярно осуществляемую на протяжении курса обучения. Текущий контроль результатов освоения УД в соответствии с рабочей программой и календарно-тематическим планом происходит при использовании следующих обязательных форм контроля:

выполнение и защита практических работ;

Во время проведения учебных занятий дополнительно используются следующие формы текущего контроля – устный опрос, решение задач.

Сводная таблица по применяемым формам и методам текущего контроля и оценки результатов обучения

Результаты обучения	Формы и методы контроля и оценки
(освоенные умения, усвоенные знания)	результатов обучения
Освоенные умения:	pesysibilatob oby tenini
- выбирать средства измерений;	Практические работы, лабораторные работы, проверочные работы
- измерять с заданной точностью	Практические работы, лабораторные работы,
различные дозиметрические величины;	проверочные работы
- определять значение измеряемой	Практические работы, лабораторные работы,
величины и показатели точности	проверочные работы
измерений;	
- использовать средства вычислительной	Практические работы, лабораторные работы,
техники для обработки и анализа	проверочные работы
результатов измерений	
Усвоенные знания:	
- основные методы и средства измерения	Практические работы, лабораторные
дозиметрических величин;	работы, проверочные работы, диф. зачёт
- основные виды измерительных приборов	Практические работы, лабораторные
и принципы их работы;	работы, проверочные работы, диф. зачёт
- влияние измерительных приборов на	Практические работы, лабораторные
точность измерения;	работы, проверочные работы, диф. зачёт
- условные обозначения и маркировку	Практические работы, лабораторные
измерений	работы, проверочные работы, диф. зачёт
- назначение и область применения	Практические работы, лабораторные
измерительных устройств	работы, проверочные работы, диф. зачёт

3.2 Форма промежуточной аттестации

Промежуточная аттестация по УД «МДК 01.03 Ядерные реакторы» — экзамен, спецификация которого содержится в данном КИМ.

Студенты допускаются к сдаче экзамена при выполнении всех видов самостоятельной работы, практических работ, предусмотренных рабочей программой и календарно-тематическим планом УД.

4 Система оценивания комплекта КИМ текущего контроля и промежуточной аттестации

Система оценивания имеет единые критерии и описана в соответствующих методических рекомендациях, в спецификации к коллоквиумам и итоговой аттестации. При оценивании практической и самостоятельной работы студента учитывается следующее:

- качество выполнения практической части работы;
- качество оформления отчета по работе;
- качество устных ответов на контрольные вопросы при защите работы.

Каждый вид работы оценивается по пятибалльной шкале.

- -«отлично» за глубокое и полное овладение содержанием учебного материала, в котором студент свободно и уверенно ориентируется; за умение практически применять теоретические знания, высказывать и обосновывать свои суждения. Оценка «отлично» предполагает грамотное и логичное изложение ответа.
- «хорошо» если студент полно освоил учебный материал, владеет основной терминологией и понятийным аппаратом, ориентируется в изученном материале, осознанно применяет теоретические знания на практике, грамотно излагает ответ, но содержание и форма ответа имеют отдельные неточности.
- «удовлетворительно» если студент обнаруживает знание и понимание основных положений учебного материала, но излагает его неполно, непоследовательно, допускает неточности, в применении теоретических знаний при ответе на практико-ориентированные вопросы; не умеет доказательно обосновать собственные суждения, владеет только базовой терминологией.
- «неудовлетворительно» если студент имеет разрозненные, бессистемные знания, допускает ошибки в определении базовых понятий, искажает их смысл; не может практически применять теоретические знания, не владеет терминологией.

ІІ ТЕКУЩИЙ КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОБУЧЕНИЯ УД

Методические указания к контрольной работе №1

Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский ядерный университет «МИФИ»

<u>Кафедра Техникум</u>

(наименование кафедры)

КОМПЛЕКТ ВОПРОСОВ ДЛЯ ПОДГОТОВКИ КОНТРОЛЬНОЙ РАБОТЫ

по дисциплине «МДК 01.03 Ядерные реакторы»

1. Введение в курс «Ядерные реакторы». История возникновения достижений и открытий –

получение ядерной энергии. Работы отечественных и зарубежных ученых, первые реакторы.

- 2. Назначение и устройство ядерных реакторов, характеристика их основных узлов, применяемая терминология в реакторной технике
- 3. Энергия, её виды. Преобразование ядерной энергии в тепловую и электрическую на АЭС и других установках.
- 4. Виды и типы ЯР, применяемых на АЭС и т.д.
- 5. ТВЭЛы определение, устройство, назначение, типы.
- 6. Цепная ядерная реакция деления ядер урана. Эффективные ядерные сечения.
- 7. Коэффициент использования тепловых нейтронов в гомогенных и гетерогенных средах.
- 8. Примерный расчет шага элементарной ячейки и решетки в гетерогенных средах.
- 9. Деление урана 238 под действием мгновенных нейтронов.
- 10. Мощный поток излучения в активной зоне. Виды излучения и методы защиты от него

Пример Вариантов вопросов к контрольной работе 1. Вариант 1.

- 1. Введение в курс «Ядерные реакторы». История возникновения достижений и открытий получение ядерной энергии. Работы отечественных и зарубежных ученых, первые реакторы.
- 2. Назначение и устройство ядерных реакторов, характеристика их основных узлов, применяемая терминология в реакторной технике.
- 3. Энергия, её виды. Преобразование ядерной энергии в тепловую и электрическую на АЭС и других установках.

Вариант 2

- 1. Виды и типы ЯР, применяемых на АЭС и т.д.
- 2. ТВЭЛы определение, устройство, назначение, типы.
- 3. Цепная ядерная реакция деления ядер урана. Эффективные ядерные сечения.

Вариант 3

- 1. Коэффициент использования тепловых нейтронов в гомогенных и гетерогенных средах.
- 2. Деление урана 238 под действием мгновенных нейтронов.
- 3. Мощный поток излучения в активной зоне. Виды излучения и методы защиты от него.

Методические указания к контрольной работе №2

Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский ядерный университет «МИФИ»

Кафедра Техникум

(наименование кафедры)

КОМПЛЕКТ ВОПРОСОВ ДЛЯ ПОДГОТОВКИ КОНТРОЛЬНОЙ РАБОТЫ

по дисциплине МДК 01.03 Ядерные реакторы

- 1. Условия протекания цепной ядерной реакции. Баланс, утечка, поглощение нейтронов
- 2. Роль и влияние отражателя на баланс нейтронов
- 3. Выход запаздывающих нейтронов из осколков деления урана, их доля в общем балансе нейтронов.
- 4. Роль запаздывающих нейтронов в системе регулирования мощности реактора
- 5. Особенности конструкции гомогенных и гетерогенных реакторов. Их преимущества и недостатки.

- 6. Понятие длины диффузии, замедления, миграции, вероятность избегания резонансного захвата.
- 7. Закон изменения мощности реактора в нестационарном режиме работы реактора. Время жизни одного поколения нейтронов
- 8. Понятие реактивности и периода реактора, их расчет.
- 9. Время работы реакторов. Глубина выгорания топлива, накопление осколков деления в ТВЭЛах
- 10. Профилирование ТВЭЛов по обогащению ураном-235.

Пример Вариантов вопросов к контрольной работе 2. Вариант 1.

- 1. Условия протекания цепной ядерной реакции. Баланс, утечка, поглощение нейтронов.
- 2. Роль и влияние отражателя на баланс нейтронов.
- 3. Выход запаздывающих нейтронов из осколков деления урана, их доля в общем балансе нейтронов.

Вариант 2

- 1. Роль запаздывающих нейтронов в системе регулирования мощности реактора.
- 2. Особенности конструкции гомогенных и гетерогенных реакторов. Их преимущества и недостатки.
- 3. Понятие длины диффузии, замедления, миграции, вероятность избегания резонансного захвата.

Вариант 3

- 1. Закон изменения мощности реактора в нестационарном режиме работы реактора. Время жизни одного поколения нейтронов.
- 2. Время работы реакторов. Глубина выгорания топлива, накопление осколков деления в ТВЭЛах.
- 3. Профилирование ТВЭЛов по обогащению ураном-235.

Методические указания к контрольной работе №3

Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский ядерный университет «МИФИ»

Кафедра Техникум

(наименование кафедры)

КОМПЛЕКТ ВОПРОСОВ ДЛЯ ПОДГОТОВКИ КОНТРОЛЬНОЙ РАБОТЫ

по дисциплине МДК 01.03 Ядерные реакторы

- 1. Накопления плутония-239 и урана-233 в ядерном реакторе
- 2. Исходные материалы: уран-238 и торий-232, реакции под действием нейтронов

- 3. Расширенное воспроизводство топлива в реакторах на быстрых нейтрона
- 4. Осколки деления урана. Основные отравители и шлаки
- 5. «Йодная яма».
- 6. Изменение запаса реактивности во время работы реактора и после остановки.
- 7. Назначение СУЗ, состав, основные принципы работы
- 8. Работа системы автоматического поддержания мощности реактора и систем компенсации.
- 9. Двухконтурная схема передачи тепла для ВВЭР, ТР. Одноконтурная схема передачи тепла для РБМК. Принцип работы схем.
- 10. Теплообмен на ЯЭУ в нормальном и аварийном режимах

Пример Вариантов вопросов к контрольной работе 3 Вариант 1.

- 1. Накопления плутония-239 и урана-233 в ядерном реакторе.
- 2. Исходные материалы: уран-238 и торий-232, реакции под действием нейтронов.
- 3. Расширенное воспроизводство топлива в реакторах на быстрых нейтрона.

Вариант 2

- 1. Осколки деления урана. Основные отравители и шлаки.
- 2. «Йодная яма».
- 3. Изменение запаса реактивности во время работы реактора и после остановки.

Вариант 3

- 1. Работа системы автоматического поддержания мощности реактора и систем компенсации.
- 2. Двухконтурная схема передачи тепла для ВВЭР, ТР. Одноконтурная схема передачи тепла для РБМК. Принцип работы схем.
- 3. Теплообмен на ЯЭУ в нормальном и аварийном режимах.

Методические указания к контрольной работе №4

Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский ядерный университет «МИФИ»

Кафедра Техникум

(наименование кафедры)

КОМПЛЕКТ ВОПРОСОВ ДЛЯ ПОДГОТОВКИ КОНТРОЛЬНОЙ РАБОТЫ

по дисциплине МДК 01.03 Ядерные реакторы

- 1. Необходимость непрерывного охлаждения активной зоны реактора.
- 2. Краткая характеристика АЭС. Графитоводные реакторы (реактор Первой в мире АЭС).
- 3. Водо-водяные реакторы (ВВЭР, ВВР, Транспортные, целевые и др.).
- 4. Реакторы канальные большой мощности, быстрые реакторы.
- 5. Существующие и строящиеся блоки АЭС в России и в мире.
- 6. Типы и виды загрязнений. Методы и этапы дезактивации. Радиационный контроль.
- 7. Твердые и жидки радиоактивные отходы
- 8. Контроль за рад. Обстановкой на предприятии
- 9. Замыкание ядерного топливного цикла
- 10. Новые технологии переработки топлива. Обращение с МА.

Пример Вариантов вопросов к контрольной работе 4 Вариант 1.

- 1. Необходимость непрерывного охлаждения активной зоны реактора.
- 2. Краткая характеристика АЭС. Графитоводные реакторы (реактор Первой в мире АЭС).
- 3. Водо-водяные реакторы (ВВЭР, ВВР, Транспортные, целевые и др.).

Вариан 2

- 1. Реакторы канальные большой мощности, быстрые реакторы.
- 2. Существующие и строящиеся блоки АЭС в России и в мире.
- 3. Типы и виды загрязнений. Методы и этапы дезактивации. Радиационный контроль.

Вариант 3

- 1. Контроль за рад. Обстановкой на предприятии.
- 2. Замыкание ядерного топливного цикла.
- 3. Новые технологии переработки топлива. Обращение с МА.

Вопросы для подготовки к экзамену по дисциплине «МДК 01.03 Ядерные реакторы» для студентов специальности

14.02.02. Радиационная Безопасность (по отраслям)»

- 1. Введение в курс «Ядерные реакторы». История возникновения достижений и открытий получение ядерной энергии. Работы отечественных и зарубежных ученых, первые реакторы.
- 2. Назначение и устройство ядерных реакторов, характеристика их основных узлов,

- применяемая терминология в реакторной технике
- 3. Энергия, её виды. Преобразование ядерной энергии в тепловую и электрическую на АЭС и других установках.
- 4. Виды и типы ЯР, применяемых на АЭС и т.д.
- 5. ТВЭЛы определение, устройство, назначение, типы.
- 6. Цепная ядерная реакция деления ядер урана. Эффективные ядерные сечения.
- 7. Коэффициент использования тепловых нейтронов в гомогенных и гетерогенных средах.
- 8. Примерный расчет шага элементарной ячейки и решетки в гетерогенных средах.
- 9. Деление урана 238 под действием мгновенных нейтронов.
- 10. Мощный поток излучения в активной зоне. Виды излучения и методы защиты от него
- 11. Условия протекания цепной ядерной реакции. Баланс, утечка, поглощение нейтронов
- 12. Роль и влияние отражателя на баланс нейтронов
- 13. Выход запаздывающих нейтронов из осколков деления урана, их доля в общем балансе нейтронов.
- 14. Роль запаздывающих нейтронов в системе регулирования мощности реактора
- 15. Особенности конструкции гомогенных и гетерогенных реакторов. Их преимущества и недостатки.
- 16. Понятие длины диффузии, замедления, миграции, вероятность избегания резонансного захвата.
- 17. Закон изменения мощности реактора в нестационарном режиме работы реактора. Время жизни одного поколения нейтронов
- 18. Понятие реактивности и периода реактора, их расчет.
- 19. Время работы реакторов. Глубина выгорания топлива, накопление осколков деления в ТВЭЛах
- 20. Профилирование ТВЭЛов по обогащению ураном-235.
- 21. Накопления плутония-239 и урана-233 в ядерном реакторе
- 22. Исходные материалы: уран-238 и торий-232, реакции под действием нейтронов
- 23. Расширенное воспроизводство топлива в реакторах на быстрых нейтрона
- 24. Осколки деления урана. Основные отравители и шлаки
- 25. «Йодная яма».
- 26. Изменение запаса реактивности во время работы реактора и после остановки.
- 27. Назначение СУЗ, состав, основные принципы работы
- 28. Работа системы автоматического поддержания мощности реактора и систем компенсации.
- 29. Двухконтурная схема передачи тепла для ВВЭР, ТР. Одноконтурная схема передачи тепла для РБМК. Принцип работы схем.
- 30. Теплообмен на ЯЭУ в нормальном и аварийном режимах
- 31. Необходимость непрерывного охлаждения активной зоны реактора.
- 32. Краткая характеристика АЭС. Графитоводные реакторы (реактор Первой в мире АЭС).
- 33. Водо-водяные реакторы (ВВЭР, ВВР, Транспортные, целевые и др.).
- 34. Реакторы канальные большой мощности, быстрые реакторы.
- 35. Существующие и строящиеся блоки АЭС в России и в мире.
- 36. Типы и виды загрязнений. Методы и этапы дезактивации. Радиационный контроль.
- 37. Твердые и жидки радиоактивные отходы
- 38. Контроль за рад. Обстановкой на предприятии
- 39. Замыкание ядерного топливного цикла
- 40. Новые технологии переработки топлива. Обращение с МА.

Пример экзамеционного Билета

Национальный исследовательский ядерный университет «МИФИ» Обнинский институт атомной энергетики Техникум

	Техникум
	УТВЕРЖДАЮ Председатель цикловой комиссии//
	«»2020_ г.
	Билет № 01 по дисциплине: «МДК 01.03 Ядерные реакторы»
1.	Системы индивидуального и группового дозиметрического контроля.
2.	Носимые портативные дозиметры и многофункциональные дозиметры-радиометры.
	Системы индивидуального и группового дозиметрического контроля. Контроль за радиоактивным загрязнением воздуха. Счетчик излучения человека (СИЧ).
3.	Основные источники и уровни облучения персонала и населения.
Препо	одаватель: / А.В.Якушева /